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Spiral Magnetic Motor Explanation

Electromagnetic Switch

Diagram taken from

Popular Science,
1979

Reviewing Kure Tekko
Japanese patents




‘Magnetic
“Wankel”

forelectric cars

BATTERY Ratary electric motor flom  in this time of uncertain gasoline sup-
Japan uses less current plies, Mipcieia cars look iy
: avective, So what's keeping them o
tha?n conventional motors our roads? Ineiiitienthatteries are the
main problem. Battalions of Tesvansh,
ers are working to develop better bat-
teries [PS, Feb.] and thus improve the
electrics’ speed and cruising range.
But Xure Tekko, a ese_engi-
ring firi, has attacked the prob-
Eem from the other end by developing
an engine that reduces the power re-
quirements of electric vehicles. The
new engine both weighs less and
draws less current than conventiona}
electric motors, 30 fewer batteries are
needed to power the car. Jettisoning
batteries, in turn, trims an electric’s
weight, improving its speed and
range. .

The Japanese nicknamed the new
design the "magnetic Wankel”:be-
cause the engine’s working principles
resemble those of a Wankel-type rota-
ty. In fact, the new engine has some
things in common with a conventional
auto engine. Unlike most electric mo-
tors, the rotary electric needs crank
starting and has a distributer.

Like the Wankel, the new design is
also lighter and smaller than a gas-
engine of the same power. And the
electric rotary is a pygmy when com-
pared to other electric engines. The
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Magnetic
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How the magnetic rotary
engine works :

Rotary electric motor has a small cobalt
magnet mounted on the edge of its drum-
fike rotor. T B0
i y

ence. ina

com/ main a permanent ferrite_

magnet. But the r has X
gap span n eleciromagnat. A dis-
inbutor geared 1o the rotor's center shaft
times the flow of current to the electro-
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New Switch for Spiral Motor

“The amazing thing is that the energy fields of a crystal can be used without
plugging it into a power station.” - Dr. Seth Putterman, Nature, May 4, 2005
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topological variations of LIMs are possible, the two common forms are shown in Fig. 7-3.

Single-Phase Motors, Linear Motors,
-, and Special Machines

Spiral Magnetic Motor is a Linear Induction Motor

7.3 LINEAR INDUCTION MOTOR

A linear induction motor (LIM) can be derived from its rotary counterpart by “cutting” the rotary
motor axially and laying out flat the stator (or primary) and the rotor (or secondary), as shown in Fig.
7-2. ‘The rotating magnetic field is thereby transformed into a translating magnetic field, and instead
of an electromagnetic torque we have an electromagnetic force or thrust. Whereas numerous

Fig. 7-2

For a refined mathematical analysis certain basic differences between a LIM and its rotary
counterpart must be taken into account. In the following, however, we shall consider an idealized

model only.
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Magnetic Wankel Replication

Requires Substantial Pulsed Electrical Input

Built by Harry Paul Sprain, 2001, US Patent #6,954,019




Why Switch to Magnetic Energy?

Earth’s Last 400,000 Year Climate History
credit: Dr. Jim HaIlSGIl, NASA Goddard Inst. for Space Studies
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2-minute promo video
for our successful 2017
Indiegogo campaign

N o _ "

Spiral-Design Permanent Magnet Motor V3
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Spiral-Design Permanent Magnet Motor V3
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Completion of Integrity Research Institute's prototype for motive power from permanent magnets, using innovative commutation techniques never combined with such a motor before now. The Archimedean spiral-design of the stator magnets generates a constant magnetic force for 90% of the cycle. Switching the magnetic field briefly at the critical part of the cycle is planned to be accomplished with low light solar and a low power electronics/actuator. More advanced "zero power" switching modes will also be implemented and tested for an optimal production-ready model.

Completion of Integrity Research Institute's prototype for motive power from permanent magnets, using innovative commutation techniques never combined with such a motor before now. The Archimedean spiral-design of the stator magnets generates a constant magnetic force for 90% of the cycle. Switching the magnetic field briefly at the critical part of the cycle is planned to be accomplished with low light solar and a low power electronics/actuator. More advanced "zero power" switching modes will also be implemented and tested for an optimal production-ready model.




Gradients Are Used for All Power

* Thermal gradient is used for heat pump

 Voltage gradient is used for electricity
“pumping” of current

» Gravity gradient is used for hydroelectric
power

* Pressure gradient used for natural gas and
water pumping

° Maﬁnetic aradient IS used for nothini so far



Inhomogeneous Magnetic Fields =

Magnetic Gradient

The Stern-Gerlach Experiment and Electron Spin o gl i o
--Modern Physics, Schaumm’s Outline Series, Gautreau et al., McGraw Hill, 1978 5—‘—‘ mw

s The net Force
T created on the ball

N S
211 THE STERN-GERLACH EXPERIMENT ' “ E bearing o= the
: - i ilver atoms havi g
In the Stem-Gerlach experiment, performed in 1921, a beam of silver atoms having zero (olal e X
orbital angular momentum passes through an inkomogencous magnetic field and slr?kes a phumgraphl_c 11:; fE;:::i nggnetlc ﬁEld
plate, as shown in Fig. 21-1.  Any deflection of the beam when the magnetic ficld is turned on is B } N radient mul tiplie d
measured on the photographic plate. ARE graaient

Their experimental setup: The magnetic field B is
more intense near the pointed surface at the top than
near the flat surface below, creating a slope in a
graph of B vs. z , which is the gradient dB/dz.

. by the induced
magnetic moment,
as with the Stern-
Gerlach Experiment
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The purpose of the inhamogeneous magnetic field is to produce a deflecting foree on any magnetilc
moments that are present in the beam, 1f a homogencous magnetic field were used, each magnetic
moment would experience only a torque and no deflecting force, In an inhomogeneous magnetic

field, however, a net deflecting force will be exerted on each magnetic moment .. For the situation e Wi N

of Fig. 211, e »
Fo= gy cos 02 (21.1) 10 degree incline | Steel ball > Q

where # is the angle between s, and B, and dB/dz is the gradient of the inhomogeneous field bearing #4 4

Two experimental examples that utilize the magnetic field gradient




Spiral Magnetic Motor (SMM)
Uses the Magnetic Gradient

Magnetic
“Wankel”

forelectric cars )
 Popular Science, June 1979 -

O

Rotary electric motor from  in thistime of uncertain gasoline sup-
Japan uses less current p:::.“el_lmgoc e lt;ok inmu:simzlryE
: a ive. So what's keeping them of
th?n conventional motors our roads? Inefficient batteries are the
main problem, Battalions of research-
By DAVID SCOTT ers are working to develop better bat-
teries [PS, Feb.] and thus improve the
electrics’ speed and cruising range.
But Xure Tekko, a_Japapese engi:
ring firm, has attacked the prob-
}em Trom the other end by developing
an engine that reduces the power re-
quirements of electric vehicles, The
new engine both weighs less and
draws less current than conventional
electric motors, 30 fewer batteries are
needed 1o power the car. Jettisoning
batteries, in turn, trims an electric's
weight, improving its speed and
range. -

The Japanese nicknamed the new

R design the "magnetic Wankel”: be-
RN cause the engine’s working principles
R resemble those of a Wankel-type rota-
ry. In fact, the new engine has some
things in common with a conventional
auto engine, Unlike most electric mo-
tors, the rotary electric needs crank

starting and has a distributor.

Like the Wankel, the new design is
also lighter and smaller than a gas-
engine of the same power. And the
electric rotary is a pygmy when com-
pared to other electric engines. The
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How the magnetic rotary
engine works i

Rotary electric motor has a small cobalt
magnet mounted on the edge of its drum-
Yike rotor, The magnet spans 0
rotor's cir r-
. The drum spins ina
mail rmanent ferrite
as
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Spiral Magnetic Motor (SMM)

Archimedean spiral is used
for SMM stator magnets
wherer =6 + 0/2 and B(r) is
linearly dependent on 0




SMM Governing Equations

Maximize radial B field (B,) for maximum torque

ENERGY DENSITY CONSIDERATIONS: B-FIELD = 50K x E-FIELD

B2 For a maximum B field in air of 20 kG
PR (2 Tesla), Ug = 2 MJ/m?
H,

For a maximum E field in air of
1 2
3 MV/m, U = 40 Jim? (A9 )

P




Rotor and Stator B Fields

Five SMM rotor
diameters were
tested: 1, 3, 4,
6, 10 inches
(25.4 cm)
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Phototransistor Data Acquisition

A Definitive Guide to Faraday Disk,
and N-Machine Technologies




Angular Velocity (rad/sec)

Spiral Magnetic Motor Angular Velocity
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Peak KE, Back Torque, Mass, B-Field
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		milli kg-m/s

		Kinetic E (J)		0.0000714		0.01		0.029		0.12		0.802

		Back Torque (N-m)		0.00016		0.0057		0.046		0.11		1.42

		Rotor Mass (kg)		0.014		0.11		0.18		0.42		1.38

		Rotor B (T)		0.25		0.45		0.47		0.63		0.64

		KE (mJ)		0.0714		10.2		28.9		120		802

		BT (mN-m)		0.16		5.7		46		110		1420

		RM (g)		14		110		175		420		1380

		RB (mT)		250		450		470		630		640

		rotor diam (in.)		1.25		3		4		6		10

		stator B field (kG)		1.6		2.1		3.3		5.1		5.4
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Iw = ang mom
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Rotor Torque and Potential Energy for One Cycle

A z: Negative Work Region o W = J'T dé
s N
2 06 \\ Positive net work required to
Té 0.5 \ |/ move latched rotor at 315° to
2 04 - end (starting point) at 360° :
o s \ fPosmv
g 0'2 \\ /Work W = 0.52 Joules
s /‘ Region :
R when starting at 0.78 J KE
0 w
Note: 315/360 = 87.5%
. Derivative (slope) of Energy = Torque 315°

| f
0.5

P — o o 9//

0 90 180 270
-0.5 -

I?EEE;,

360

10" Rotor Torque (N-m’

Angular Displacement (degrees) _:Easurement T=rxF
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Sheet1

		Degrees of Arc		0		55		110		165		220		275		286		296		306		316		327		338		349		360

		Torque (N-m)		0		-0.18		-0.18		-0.18		-0.18		0		0.13		0.38		0.89		1.4		1.1		0.51		0.25		0

		Integration of Torque Curve (J)		4.95		9.9		9.9		9.9		4.95		0		0.715		2.55		6.35		11.45		13.75		8.855		4.18		1.375

								The torque is the slope of the potential energy curve, as F is gradient of U.

		Summation						39.6						0		88.825										49.225

		Pot Energy		39.6		34.65		24.75		14.85		4.95		0		0.715		3.265		9.615		21.065		34.815		43.67		47.85		49.225

										Both of these need to be graphed with a numerically linear X-Axis
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Degrees of Arc - not to scale
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Sheet1

		Degrees of Arc		0		55		110		165		220		275		286		296		306		316		327		338		349		360

		Torque (N-m)		-0.18		-0.18		-0.18		-0.18		-0.18		0		0.13		0.38		0.89		1.4		1.1		0.51		0.25		0

		Integration of Torque Curve (J)		0.17226		0.17226		0.17226		0.17226		0.08613		0		0.012441		0.04437		0.11049		0.19923		0.23925		0.154077		0.072732		0.023925

						W or PE = F x dl where dl is arclength (or T dθ where dθ x .0174 rad/deg) so 0.0174 is correction to get Joules

								The torque is the slope of the potential energy curve, as F is gradient of U.

		Summation						0.77517						0		1.631685										0.856515

		Pot Energy		0.77517		0.60291		0.43065		0.25839		0.08613		0		0.012441		0.056811		0.167301		0.366531		0.605781		0.759858		0.83259		0.856515

		PE x.0174 (J)		0.013487958		0.010490634		0.00749331		0.004495986		0.001498662		0		0.0002164734		0.0009885114		0.0029110374		0.0063776394		0.0105405894		0.0132215292		0.014487066		0.014903361
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Prof. Eric Laithwaite’'s Suggestion
for Increased Torque

i
AXIS OF
MAGNET POLES INDUCED POLES

Place metal plate of particular permeability underneath rotor in order to produce:

Favorable Hysteresis Currents

Laithwaite Eric, Propulsion Without Wheels, English Univ. Press, 1970 .



Hysteresis Depends on
Permeability and Resistivity™

Choosing aluminum or copper for example, the permeability will be the same as free
space (M, = 41 x 10-7), which is very low and the resistivity is also low. Choosing an
aluminum plate that is about a centimeter (1 cm) thick would also be a good choice
since the thickness of the sheet "delta" is squared and also in the numerator. Altogether,
the calculation shows a relatively slow build-up over a tenth of a second and only about
30% at a millisecond after the stator field magnet is applied to the rotating disk, which is
in keeping with a delayed eddy current that will

as would be normally expected from Lenz’ Law.

_ p =resistivity, p = permeability, & = thickness of plate, H fieldW
*Bozorth, Ferromagnetism, J. Wiley & Sons, 2003




IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-21, NO. 5, SEPTEMBER 1985

New frontiers in mngeﬁCS PULSE GENERATION WITH SHORT COMPOSITE WIRES

. wlegand’s €. Radeloff and G. Rauscher
IEEE TRANSACTIONS ON MAGNETICS, VOL, 31, NO. 6, NOVEMBER 1995
mwaI WIres Induced Pulse Voltage in Twisted Vicalloy Wire with Compound Magnetic Effect

Susumu Abe and Aldra Matsushita
Department of Electrical Engineering, Kanagawa University, Yokohama, Japan

Comparison of puise generators used in electronic ignition

— e —

T T Signal-noise |  Rate “Temperature Gep Electrical |  Pulse
o uﬂT sensitivity range (*F) _ _ W_\_v 1. Input _nmpltud-
WIEGAND EFFECT | Verygood | Not rate 95 to +500 Minimal None Volts
sensitive (approx.)
VARIABLE RELUCTANCE | Fair Poor E:'; ;t:?u:.?m Critical :io:tuimd th:itzﬂu
HALL EFFECT Poor Good -40 to +275 Moderate Required Millivolts
LED Poor Not rate -40 to +275 Minimal Required Millivolts
sensitive
MAY 1070
Vicalloy creates Barkhausen jumps of magnetic domains that align quickly pgp. science
May, 1979

Wiegand wires are FeCoV bistable
Vicalloy (2 coercivity regions)

US 1973 patent # 3,757,754

Used for years for auto ignitions

Provides repeatable magnetic pulse



IEEE TERANEACTIONS O MAGHETICS, Wi, 43, NG, &, ALNGLET 2007

Zero-Power Magnetic Levitation Using Composite
of Magnetostrictive/Piezoelectric Materials

MS-PZT Toshiyuki Ueno and Toshiro Higuchi

Department of Precision Machinery Engineering, The University of Tokvo, Bunkyo-ku, Tokyo 113-8656, Japan

COMPARISON OF POWER CONSUMPTION OF ELECTROMAGNET AND DEVICE IN

STATIC AND DYNAMIC OPERATION
E.M. Device
Static operation
Max input voltage [V] 2 200
Power consumption [W] 3.0 00 «—
Dynamic operation (10Hz)

Max inpa:_v';ltage A 2 200
Power consumption 1.2 0.27
—  Dynamic operation (100Hz)
Max input voltage 2 200
Power consumption 1.2 2.47

GE[]J [:H'll'l'.l:} Nd-B-Fe Magnet

Bellewille spring washer
Non-magnetic bolt

Fig. 11. Magnetic force wersus gap for various curent (coil) /. and voltage
(PZT) ¢y, and its magnification around v = 0.5 mm, #" = 3 Nand ip = 0 AL

Terfenol-D

Strain gage
Stack PZT actuator

[]won

Fig. 1. Configuration. Terfenol-D and stack PZTs bonded to iron yokes are

Inverse
magnetostrictive (MS)

effect combined with a

piezoelectric material
(PZT) and VOItage applied prestress by nonmagnetic stainless bolts via Bellville springs.




Magnetic Switching for SMM

Piezoelectric Actuator that bends
with very little voltage applied

IRl V-Track Dual SMM
with Radial Magnets
Switching can be applied
to the top stator magnet




MS-PZT ] <ol
Magnetic Switch —d
~ Replicated i

%ﬁMagnetoStrictive (MS) rod surrounded by ring magnet

Piezoelectric (PZT) cube with DC pulsed electrical input,
timed to rotation speed /7

2/

Short demo video online by Dr. Valone,
showing various spiral magnetic motors,
that have a commutation point at the end
of the spiral which requires a magnetic
pulse to overcome the barrier.

The above MS-PZT switch converts a
voltage pulse, with virtually no current, directly
into a magnetic pulse, at very high efficien



Spiral Magnet Motors Online

Calloway V Gate : 01

The trigger magnet / magnets face the opposite
direction to that of the drum magnets - repelling force

lotor, New Design Sine Wave Concept Idea, Free Alternative Energy,
e, Electric



Multi-Stage SMM

MAGNETIC SPRAL ENGINE




[
wn

es

Conceptual Block Diagram for SMM Switching Module 2018

Radial
Axial SMM
successful \/ \/
| ? Polymagnets Piezoelectric Is it
Experiment Actuator successful |
%& Experiment ?
Wiegand @
Bun-dle Apply low light |
Experiment energy harvested |
Phase | power circuit
no Optimizing Magnetic ' no |
Laithwaite Eddy Switch C“rf‘tgl\";l‘l'\jed for MS-PZT
Current Torque eac Experiment
Amplifier
© Apply low light Design and apply Combine
i i | energy K : with
' Piezoelectric PZT E‘> harvested new contro no
| power o
Actuator Exper circuit circuit Polymagnets
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ResearchGate Reports 3,600 Reads up to 2021

“Permanent Magnet Spiral Motor for Magnetic Gradient Energy
Utilization: Axial Magnetic Field”

2015
award

YOUR RESEARCH IS IN THE SPOTLIGHT

Permanent Magnet Spiral Motor for Magnetie Gradient Energy
Utilization: Axial Magnetic Field

Emall from Session Cheur https://www.researchgate.net
at AEE World, QO 1 9 Congratulations, Thomas. Your achievement has been included directly on the home feeds of

\ your colleagues and co-authors.

“I look forward for the advancements in this unique area. PS, | do a lot of work in the
energy efficiency space, and your motor would be welcome, so let's please keep in touch. ”

Richard Costello, PE, MSEM, BSME, CEM
President - Acela Energy Group, Inc.
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