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Casimir energy between a sinusoidally corrugated sphere and a plate
using proximity force approximation
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Abstract: The aim of this paper is to obtain the Casimir energy between a sinusoidally corrugated sphere and a plate. We

first present a derivation of the sphere-plate Casimir force obtained by applying proximity force approximation, and

afterwards, we obtain the effect of deformation on the Casimir interaction energy by considering the sphere to have

different kinds of sinusoidal corrugations. We suppose a/r B 0.00755 for the sake of proximity force approximation

validity and an experimental accuracy goal of 1 % in the case of a sphere with the radius r at a minimal distance a from a

plate. The effect of finite conductivity is taken into account for such short distances. Furthermore, we consider that mirrors

are not perfect reflectors indeed which concludes in exact theoretical prediction. Thus, we consider the correction due to

finite conductivity. We note that for open geometries, temperature dependence of the Casimir force is larger than that of

closed geometries. We also investigate thermal corrections of the Casimir force.
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1. Introduction

The Casimir effect is the dominant interaction between two

neutral plates with micron or submicron range separation

distance [1]. This tremendous effect with macroscopic

manifestation has got a significant role in miniaturized

physical systems. This quantum effect originated from

modification of the vacuum fluctuations has been investi-

gated for a variety of fields, geometries, number of spatial

dimensions and boundary conditions [2, 3]. A large number

of experiments are done to verify the realization of the

Casimir effect [4–8]. Considering that maintaining parallel

plates has been a challenge experimentally, most of the

experiments are done using the configuration of sphere-

plate instead of two parallel plates geometry [5, 9, 10].

According to the issue that the sphere-plate geometry is

a highly relevant experimental configuration, it faces rapid

theoretical and experimental advancement. Some of the

studies containing the sphere-plate electromagnetic vac-

uum energy have been extremely done since 2007 by many

researchers [11–14]. They have performed exact Casimir

calculations for sphere-plate geometries based on the

scattering matrix methods as a proficient technique to study

the interaction energy, because in this approach the accu-

racy of comparison between theory and experiment can be

determined by the levels of precision. In these investiga-

tions, the plate is supposed to be perfectly conducting,

while the electromagnetic field on the sphere is satisfied

with either a perfect conductor boundary condition or an

imperfect conductor boundary condition. The repulsion in

the sphere-plate geometry has been studied in [15], using

the approaches reported in [11–14] with the aim of finding

the constraints on the repulsion caused by magnetic per-

meability of the sphere. Performing analytical and

numerical worldline approaches for the Casimir effect of

the sphere-plate and cylinder-plate geometries [16], the

interplay between these geometries and temperature has

been investigated thoroughly. Applying the functional

determinant method, the finite temperature Casimir effect

for a sphere and a plate—as a geometry of experimental

interest—has been investigated focusing on the limiting

cases [17]. Chen et al. [18] are the first to calculate and

measure the lateral Casimir force between sinusoidally

corrugated plate and sphere (in the case of real metals of
*Corresponding author, E-mail: a.seyedzahedi@gmail.com

Indian J Phys (May 2016) 90(5):583–588

DOI 10.1007/s12648-015-0781-x

� 2015 IACS

http://crossmark.crossref.org/dialog/?doi=10.1007/s12648-015-0781-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12648-015-0781-x&amp;domain=pdf


finite conductivity) based on the atomic force microscope.

Chiu et al. [19] have presented the measurement data of the

lateral Casimir force between two corrugated surfaces of

sphere and plate in the nonadditive regime. They have

performed a complete comparison of these measurement

data with the exact theory and the predictions of PFA [20].

Even the non-equilibrium Casimir force of the sphere-plate

geometry has been treated both analytically and numeri-

cally [21]. Calculations of the Casimir force between a

plate and a nanostructured surface at finite temperature has

been presented in the framework of the scattering theory

[22]. The Casimir–Polder forces between an atom and a

surface of arbitrary uniaxial corrugations have been pre-

sented applying a fully nonperturbative technique in the

height profile of the corrugation [23]. Kruger et al. [24]

have recently investigated the effect of roughness or sur-

face modulations on the distance dependence power law of

the interactions between curved objects at proximity using

height distribution functions. Applying the worldline

numerics [25], Gies et al. have examined the Casimir

interaction energies for the sphere-plate and cylinder-plate

configuration due to the scalar-field fluctuations under the

Dirichlet boundary conditions for a wide range of curvature

parameters. Based on a high-precision calculation and

using these worldline numerics, they have determined the

validity bounds of the proximity force approximation

quantitatively. They have observed that for the accuracy

goal of 1 %, the PFA is valid for a/r B 0.00755, where a/

r is called the curvature parameter, r is the radius of the

sphere at a minimal distance a from a plate [26]. Devoted

to study the force between an infinite plane surface and an

arbitrary curved one, the validity of PFA in the weak

coupling is presented for all temperatures by Milton et al.

[27] who have also obtained exact results for the Casimir

energy between two weak-coupled semitransparent spheres

at arbitrary temperatures.

Analysis shows that using PFA for obtaining plate-

sphere result from the plate–plate conclusion for corruga-

tions with wave length k is a good approximation as long as

ra is much bigger than k2 and the amplitude of corrugation

is smaller than other length scales [28]. Application of the

proximity force approximation for corrugated surfaces may

not obviously lead to precise expressions. However, use of

this approximation conducts in a simple procedure for

achieving the purpose and emitting the difficulties

appearing in the exact investigations.

Because of the experimental importance of the sphere-

plate configuration as well as the strong dependence of the

Casimir force on the interaction bodies’ properties, their

surface states, their shapes and many other factors, this

paper is devoted to calculation of the Casimir force

between a sinusoidally corrugated sphere and a plate. We

try to obtain the Casimir energy for the highly relevant

experimental configuration of sphere-plate geometry for

different kinds of corrugations on the sphere based on PFA

as well as thermal and finite conductivity corrections.

2. The Casimir interaction energy for sphere-plate

geometry

The approximate Casimir energy between two curved

surfaces placed at a short separation distance can be

obtained as a sum of energies between a pair of small

parallel plates [27–30]. Considering this approximation, we

try to use two parallel plates’ Casimir energy to obtain the

Casimir force for the sphere-plate geometry. The electro-

magnetic Casimir energy density for two parallel perfect

conductor plates with separation distance H is given by [2,

31, 32]

epp Hð Þ ¼ � p2

720H3
; ð1Þ

and consequently, the normal Casimir force density for this

configuration is

Fpp Hð Þ ¼ � p2

240H4
: ð2Þ

Let us consider a sphere with radius r above a plate,

located in the shortest distance a. The Casimir force

between the sphere and the plate can be obtained by

integrating the Casimir force density over the half-sphere

which is opposite to the plate

Fsp ¼
Z

Fpp Hð Þds; ð3Þ

where the subscript sp stands for the sphere-plate

geometry, similar to cylinder-plate geometry [33]. One

can use polar coordinates to determine the normal distance

of a point of the sphere with parameter h, from the plate as

H = a ? r(1 - cosh). Thus, the Casimir force for this

geometry can be written as

Fsp ¼ � p3r2

120

Z p=2

0

sin h

aþ r 1� cos hð Þ½ �4
dh; ð4Þ

and considering that a � � r, the Casimir interaction force

reads

Fsp ¼ � p3r
360a3

: ð5Þ

Integrating the normal Casimir force with respect to the

separation distance a, the Casimir interaction energy

between a sphere and a plate with no corrugations is

given by
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Esp ¼
Z 1

a

Fspda ¼ � p3r
720a2

: ð6Þ

It is worth mentioning that in addition to the geometry,

other parameters such as finite temperature, finite

conductivity and surface roughness must be considered.

In the experiments, the effect of imperfect reflections of

mirrors on the Casimir force is noticeable; therefore, it is

necessary to consider finite conductivity to obtain precise

theoretical predictions [34] Lambrecht and Marachevsky

[35] have obtained the exact Casimir force between two

arbitrary periodic dielectric gratings. They have found that

considering finite conductivity gives a smaller deviation of

the exact force from the PFA prediction than the

calculation of perfect mirrors. Considering the finite

conductivity of metals, the corresponding corrections

may be included in the mentioned Casimir energy per

unit area for two parallel perfect conductor plates [19, 36–

38] as

epp Hð Þ ¼ � p2

720H3
1þ

X4
n¼1

Cn

kp
2 pH

� �n
 !

ð7Þ

where kp is the plasma wavelength and the coefficients Cn

are

C1 ¼ �4;C2 ¼
72

5
; C3 ¼ � 320

7
1� p2

210

� �
;

C4 ¼
400

3
1� 163p2

7350

� �
:

Equation (7) is applicable to the separations H C kp.
Imposing PFA approximation on the correction terms leads

to the following correction in the force derived by Eq. (5)

DFsp � � p3r
120

X4
n¼1

Cn

kp
2p

� � n
1

anþ3
; ð8Þ

and integrating the correction of the Casimir force with

respect to the separation distance, the corresponding

correction to the Casimir energy due to the finite

conductivity can be obtained

DEsp � � p3r
120

X4
n¼1

Cn

kp
2p

� � n
1

nþ 2ð Þanþ2
: ð9Þ

3. Results and discussion

3.1. Imposing the effect of deformation on the sphere-

plate Casimir interaction energy

The Casimir interaction strongly depends on the shape and

orientation of the surfaces; therefore, any kind of deforma-

tion in the interacting surfaces may lead to a modification in

this interaction. We want to develop PFA for a sphere with

periodic corrugations above a smooth plate. This description

is valid only to study deformations with large wavelengths.

Hence, the roughness effect is obtained as a small correction

to the Casimir energy [39–41]

At this point, we concentrate on the sinusoidal corru-

gations. As the first example, assume the sphere to be

corrugated in the azimuthal direction as shown in Fig. 1.

The following function describes the radius of the corru-

gated sphere

r0 ¼ r þ A sin luð Þ ð10Þ

where r0 and r are radii of sphere with and without corrugation,
respectively, A is the corrugation amplitude and l is the

corrugation’s frequency, which is necessarily a positive integer.

Considering the additive summation of the Casimir energy of

the sphere-plate geometry with no corrugation obtained in

Eq. (6) and knowing that the shortest distance between the

corrugated sphere and the plate is still a, the Casimir energy for

the corrugated sphere (with large corrugation wavelength) and

the plate can be obtained as

Ecor
sp ¼ 1

2p

Z 2p

0

Esp uð Þdu

¼ � p3

720a2
1

2p

Z 2p

0

r þ A sin luð Þð Þdu

¼ � p2

720a2
prlþ A sin2 lpð Þ
� �

=l

ð11Þ

in which we use the fact that all the radii corresponding to

different azimuthal angles introduced in Eq. (10) have

equal probability [33, 42–44]

As mentioned before, l is an integer and therefore the

effect of azimuthal corrugation cancelled in Eq. (11).

Indeed, the Casimir energy takes the form of sphere-plate

energy with no corrugation (Eq. (6)).

In this case of corrugation, the correction of finite con-

ductivity of Eq. (9) yields

DEcor
sp ¼� p3

120
rþAsin 2 lpð Þ

lp

� �X4
n¼1

Cn

kp
2p

� �n
1

nþ2ð Þanþ2

ð12Þ

when l is integer, Eq. (12) returns to Eq. (9) and therefore

the effect of the azimuthal corrugation in the finite con-

ductivity correction is emitted.

Fig. 1 A cross section of azimuthal corrugated sphere above the plate

with a � � r for PFA applicability in which r is the radius of the

sphere and a is the shortest separation distance
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As another simple example of sinusoidal corrugations,

we describe a polar corrugation as

r0 ¼ r þ A sin mhð Þ ð13Þ

where m is the frequency of the corrugation and it must be a

positive integer. The Casimir energy corresponding to this

configuration is

Ecor
sp ¼ 2

p

Z p=2

0

Esp hð Þdh ¼ � p2

360a2
pr
2
þ 2A sin2 pm=4ð Þ

m

� �

ð14Þ

As illustrated in Fig. 2, for asymptotic large values of m,
the Casimir energy corresponding to the polar corrugation

approaches the energy of the case with no corrugation.

The correction due to the finite conductivity with a

similar argument leads to the following result

DEcor
sp � � p2

60

pr
2
þ 2A sin2 pm=4ð Þ

m

� �

X4
n¼1

Cn

kp
2p

� �n
1

nþ 2ð Þanþ2
: ð15Þ

The same as the previous diagram, the energy correction

corresponding to the finite conductivity for polar

corrugation disappears for asymptotic large m s.

As the final example, we perform the calculations for

one more complete case: a sphere with both azimuthal and

polar corrugations. A sphere with sinusoidal corrugation is

in some way similar to a golf ball and one may describe

this corrugation by the following ansatz

r0 ¼ r þ A sin mhð Þ sin luð Þ ð16Þ

Even in this case, the shortest distance is still a which is

measured from the pole of the sphere (where h;u ¼ 0) to

the plate. The Casimir energy associated with this

configuration can be written as

DEcor
sp � � p

720a2
p2r þ 4A sin2 plð Þ sin2 pm=4ð Þ

lm

� �
ð17Þ

Considering that for integer l, sin plð Þ ¼ 0, and this

equation takes the form of Eq. (6). This kind of

corrugations contributes neither to the Casimir energy of

the sphere-plate geometry nor to the correction related to

the finite conductivity. Therefore, the finite conductivity

correction is still the one mentioned in Eq. (9).

3.2. Finite temperature corrections of the Casimir

energy

For two parallel plates, the finite temperature Casimir force

per unit area reads [45]

Fpp Hð Þ ¼ � p2

240H4
� p2T4

45
þ pT

H3

X1
k¼1

X1
l¼1

k2

l
exp � pkl

HT

� �

ð18Þ

or

Fpp Hð Þ¼�nR Hð ÞT
4pH3

�2T

p

X1
k¼1

X1
l¼1

2p2l2T2

kH
� plT
k2H2

þ 1

4k3H3

� �
e�4pHTkl

ð19Þ

with H as the separation distance between the plates.

Equation (18) explains that in the low-temperature

region, the thermal correction is dominated by the zero

temperature term, and therefore, the leading term of the

thermal correction in the low-temperature limit is

DFLow T
pp � � p2T4

45
: ð20Þ

Imposition of PFA on this term results in the following

thermal correction of the normal Casimir force

DFLow T
sp � � 2p3T4r2

45
þ � � � ð21Þ

which is independent of a. Consequently, we are capable of

obtaining the thermal correction of the Casimir energy.

Taking azimuthal corrugation into account, one obtains the

following expression for the thermal correction of the

Casimir energy as

DELow T
sp � � 2p3T4a

45

1

2p

Z 2p

0

r þ A sin luð Þð Þ2duþ � � �

¼ p3T 4a

45
A2 þ 2r2
� �

þ � � � ð22Þ
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Fig. 2 Correction of the Casimir energy DE = Esp
cor(r) - Esp(r)

scaled using E0 = 3.17 9 10-26j versus the number of the corruga-

tion m for A = 4 pm and r = 1 lm
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For the investigated polar corrugation, we obtain

DELow T
sp � � p2T4a

45

8Ar 1� cos pm=2ð Þð Þ þ A2pmþ 2pr2m
m

� �

þ � � �
ð23Þ

and for the golf-ball-like corrugation, the thermal correc-

tion of the Casimir energy in the low-temperature region

can be obtained in a similar manner.

We introduce

qLow T �
DELow T

sp r0ð Þ � DELow T
sp rð Þ

DELow T
sp rð Þ ð24Þ

where DELow T
sp r0ð Þ and DELow T

sp rð Þ are the low-temperature

corrections of the Casimir energy in the presence and

absence of the corrugations, respectively. We have pre-

sented in Fig. 3 that the Casimir energy correction in the

low-temperature limit asymptotically approaches zero.

According to Eq. (19), in the high-temperature region

the exponential term goes to zero quickly, and therefore,

the classical term becomes the first term of the thermal

correction

DFHigh T
pp Hð Þ � � nR 3ð ÞT

4pH3
þ � � � ð25Þ

Imposition of the proximity force approximation on

Eq. (24) with respect to r � � a results in

DFHigh T
sp � � nR 3ð ÞTr

4a2
þ � � � ð26Þ

Performing integral over this correction, one can obtain

the energy correction easily. In the case of azimuthal

corrugation at high temperatures, the thermal correction of

the Casimir energy is

DEHigh T
sp � � nR 3ð ÞT

4a
r þ A sin2 lpð Þ

lp

� �
þ � � � ð27Þ

Considering that l is integer, this kind of corrugation

does not contribute in the high-temperature correction of

the Casimir energy. In the case of polar corrugation, one

may obtain

DEHigh T
sp � � nR 3ð ÞT

2a

r

2
þ 2A sin2 mp=4ð Þ

mp

� �
þ � � � ð28Þ

We introduce

qHigh T �
DEHigh T

sp r0ð Þ � DEHigh T
sp rð Þ

DEHigh T
sp rð Þ

ð29Þ

in which DELow T
sp r0ð Þ and DEHigh T

sp rð Þ are the high-tem-

perature corrections of the Casimir energy in the presence

and absence of the corrugations, respectively. Figure 4

shows that this thermal correction of the Casimir effect is

significant for small values of m, while it vanishes in the

asymptotically large values of m which is the same as what

the previous diagrams present.

Eventually in the case of a golf-ball-like corrugation, the

correction of the Casimir energy is

DEHigh T
sp � � nR 3ð ÞT

4a
r þ 4A sin2 lpð Þ sin2 mp=4ð Þ

lmp

� �
þ � � �

ð30Þ

Considering l as an integer, Eq. (28) indicates that this

kind of corrugation does not contribute in the high-

temperature correction of the Casimir energy.

This is interesting enough to note that for large values of

separation distance a, thermal corrections of the Casimir

energy in the high-temperature limit tend to zero, while

increasing the same factor in the low-temperature limit

concludes in growing the corrections’ amount.

4. Conclusions

This paper is devoted to obtaining the Casimir interaction

energy between a sinusoidally corrugated sphere and a

0 20 40 60 80 100
0

5. 10 8

1. 10 7

1.5 10 7

2. 10 7

2.5 10 7

Fig. 4 Calculated dimensionless parameter qHighT versus the number

of the corrugation m for A = 4 pm and r = 1 lm
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Fig. 3 Plot of the dimensionless parameter qLowT versus the number

of the corrugation m for A = 4 pm and r = 1 lm
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plate. First, we have presented a derivation for the Casimir

force achieved by the proximity force approximation.

Application of this procedure has helped us to emit the

difficulties appearing in the scattering matrix method,

whereas the proximity force approximation does not lead to

the exact results. This approximation is applicable for a/

r B 0.00755 and an experimental accuracy goal of 1 % for

a sphere with radius r in the surface-to-surface closest

distance a from a flat plate. For such short distances, the

effect of finite conductivity is not negligible. Furthermore,

the effect of imperfect reflections is experimentally

noticeable so that considering the finite conductivity, we

have obtained the corresponding corrections in the Casimir

interaction energy, which has a strong dependence on

fields, geometries, number of spatial dimensions and

boundary conditions in which any kind of deformation may

conclude in a modification. In an attempt along these lines,

we have supposed the sphere to be corrugated, and with the

aid of the additive summation, we have investigated the

effect of deformation. We have considered ra much bigger

than k2 and the amplitude of the corrugation smaller than

other length scales for PFA validity. Due to the fact that the

Casimir effect dependence on the temperature in the open

geometries such as sphere-plate geometry is significant and

experimentally important, we have also considered the

thermal corrections of the Casimir force. It is worth men-

tioning that for large values of separation distance, thermal

corrections of the Casimir energy in the high-temperature

limit tend to zero, while increasing the same factor in the

low-temperature limit concludes in growing the correc-

tions’ amount.
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