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Abstract 

There are two interpretations as to the source of energy behind the Casimir effect.  In the first, the energy source is 
considered to be the zero-point fields in the vacuum of space between the plates.   In the second, the source is considered 
to come from the potential energy of atoms in the bulk matter making up the plates.  It is believed that these two 
interpretations are equivalent.   

The proximity force approximation (PFA), which can be premised upon the vacuum interpretation, is used to calculate 
forces between certain non-parallel plates.  The PFA corrected for plasma wavelength and temperature has been used to 
gauge experiments, all of which have been done at room temperature until recently, with good agreement.  When applied 
to, for example, sinusoidal half wavelength wedge geometry, anomalous asymmetric lateral forces appear.  Because the 
PFA is premised upon tiny parallel plates, the local geometry of non-parallel plates is lost.  When local geometry is 
considered, additional anomalous asymmetric forces can appear.  

The pair-wise summation (PWS) approximation, based upon the bulk matter interpretation, does not produce asymmetric 
forces.  Given the putative equivalence between the two interpretations, asymmetric PFA plate forces could be written 
off as artifact. 

There are problems with the equivalence hypothesis, the most notable being that the PWS calculation is much smaller 
than the PFA, requiring a calibration factor and the two approximations produce forces in different directions for 
laterally asymmetric plates. The simplest way to reconcile the two points of view may be to abandon equivalence and 
instead consider the PWS bulk approximation a subset of the Proximity Force Approximation (PFA).  The PFA would 
then represent the sum of vacuum and bulk components.  
1. Introduction 

As to the question whether the Casimir effect [1] can produce asymmetric forces with certain plate configurations , 
conventional wisdom says no.  Asymmetric forces would imply that energy could be extracted from the quantum 
vacuum.  Although Cole and Puthoff [4] have shown that extracting energy from the vacuum would not, in principle, 
violate the second law of thermodynamics, no one to date has shown a feasible extraction method. 

It is true that Maclay and Forward proposed a gedanken  spaceship powered by the dynamic Casimir effect where energy 
is pumped into a parallel plate cavity [11, 12], resulting in a propulsive force that was vanishingly small.  However, no 
one, to the author’s knowledge, has shown that a native Casimir force, using laterally asymmetric plates can produce an 
anomalous asymmetric force.  

There are two interpretations as to the source of energy behind the Casimir effect [11, 12]. In the first, the energy source 
is considered to be the zero-point fields in the vacuum of space between and around the plates.  Such a system could 
conceivably be open.  The Proximity Force Approximation (PFA), also known as the Derjaguin approximation [5], can 
be premised upon an energy from the vacuum of space interpretation and can be used as a surrogate for that 
interpretation in calculations of laterally asymmetric plate geometries.   

In the second interpretation, the source is considered to come from the potential energy of atoms in the bulk matter 
making up the plates, an extension of the Van der Waals forces.  Without some other energy source input, such a system 
would be closed and could not produce anything other than equal and opposite forces between the plates, no matter their 
shape.  The Pair Wise Summation (PWS) approximation can be used as a surrogate for the bulk interpretation in 
calculations of laterally asymmetric plate geometries.   

The PFA and PWS calculations for lateral force will be compared and shown to be very different in both magnitude and 
direction of force in laterally asymmetric plate geometries.   Even though it is believed that these two interpretations are 
equivalent [11, 12], it will be shown that another interpretation is that the energy from the PFA calculation is consistent 
with the sum of the energy from the bulk PWS calculation plus a purely vacuum energy component. 
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2. The Pair Wise Summation Approximation (PWS) 

With the Pair Wise Summation approximation, the interaction energy potentials of pairs of polarizable atoms from two 
plates are added together as shown in Fig. 1. 

 

 

 

 

 

 
Fig. 1 – The summation of the energy potentials of pairs of atoms from the two plates 
The energy potential of the atom pair i, j is described by the Casimir-Polder equation [7, 15]: 
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The parameter r ij is the distance between atoms i and j, αΕ and αM are the electostatic and magnetic polarizability of the 
atoms respectively.  Since αM << αE in many cases, the Casimir Polder equation is sometimes simplified to [2]: 
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Since the forces on any pair of atoms are equal and opposite, the vector sums of all the forces for all the pairs of atoms 
will also be equal and opposite. 

It will be noted that there is no restriction on the shape of the plates with PWS.  Also, it is generally recognized that the 
total energy of the plates is not the sum of the energy from the individual pairs of atoms, but that further atoms in the 
plate are shielded by nearer atoms [15]. 

3. The Proximity Force Approximation (PFA) 

The Proximity Force Approximation (PFA) is based upon the forces between two perfectly conducting parallel plates.  
The conducting plates suppress vibration modes of virtual photons between the plates but not outside the plates resulting 
in there being less energy inside the cavity than outside.  The subsequent energy difference between outside and in 
results in an attractive force pushing the plates together. 
 
 
 
 
 
 
 
 
 
Fig. 2 – A Casimir cavity between two perfectly conducting parallel plates 
The Casimir energy per unit x, y area epp derived from the zero point fields in a vacuum for two perfectly conducting 
parallel plates is: 
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where z is the distance between plates.  The normal force per unit area on the plates is: 
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In a paper by Milonni, Cook and Goggin [13] the Casimir forces are calculated explicitly from the radiation pressure of 
the vacuum.  The result for perfectly conducting parallel plates is the classical Casimir formulation of the force per unit 
area as given in Eq. 4.  

3.1 – The proximity force approximation for non-parallel plates 

Non-parallel plates can be thought of as multiple parallel plates as is shown in Fig. 3.  For simplicity, the energy per unit 
area in the y direction is considered to be constant in this current consideration.  But it does not need to be.  The same 
methodology can be used to calculate forces between a sphere and flat plate, the result of which is the so called 
“Proximity Force Theorem”, which states that the attracting force Fsp between a sphere of radius R separated from a flat 
plate by distance a is 2πR epp(a), where epp(a) is the energy per unit area for two parallel flat plates separated by distance 
a [3, 9, 10]. 
 
 
 
 
 
 

 
Fig. 3 – Dividing non-parallel plates into a set of parallel plates 
The energy per unit x, y area epp can generally be easily determined for a general volumetric pixel given the geometry of 
the plates.  From that the total plate energy can be determined by integrating over x, y area in terms of some geometric 
parameter for distance between plates - z0. 

To be clear, the normal direction is the direction between the plates, perpendicular to the parallel platelets - in the z 
direction.  The lateral direction is along the plates in the x direction. 
Given the energy e per unit x, y area at some location on the plate, forces per unit x, y area at that location can be 
determined in the following way: 
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Since energy per unit area is constant in the y direction for what is being considered in this paper, the middle force term 
in the direction of the j unit vector (the y direction) goes to zero.  Also, while more “exact” methods [8, 14] exist for 
arbitrary geometries the geometries considered here are within the domain of the PFA. 

3.2 – Calculation of normal forces 

Using the right most term of Eq. 5 (the k unit vector term), the normal forces per unit x, y area for each plate can be 
calculated as follows, first for plate 1: 
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Similarly for plate 2 the normal component of force per unit area will be: 
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Notice that fz1 on the bottom Z1 plate is in the positive direction (up) and fz2 on the top Z2 plate is in the negative direction 
(down).  Thus the forces are attractive and since fz1 = - fz2 for all parts of area Axy the normal forces are equal and 
opposite for normal forces calculated using the PFA. 
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3.3 Calculation of lateral forces 

As with the normal forces, the lateral forces per unit x, y area for each plate can be calculated as follows using i unit 
vector term of Eq. 5, first for plate 1: 
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Similarly for plate 2: 
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Total lateral forces on plates 1 and 2 may or may not be equal and opposite depending upon the asymmetric geometry of 
the plates.  The reason, as can be seen in the equations for the two plates, the partial derivatives may not be equal. 

3.4 Limitations of the PFA 

Unlike pair wise summation, which can be used for plates of any shape, the PFA has restrictions on plate geometry. 

 

 

 

 

 

 
Fig. 4a – Restrictions on plate slope Fig. 4b – Restrictions on plate radius of curvature 
In Fig. 4a, line AB is the distance used in the PFA as the distance between plates Z1 and Z2 at location x.  Yet C on plate 
Z2 is closer to A than B is, and D on plate Z1 is closer to B than A is.  Thus area at C would be expected to influence A 
greater than B does and D would influence B greater than A does, leading to the restriction that slopes on plates not be 
too great unless the distances between plates be far enough apart at these sections of plate as to contribute negligible 
influence (for example like a sphere and flat plate). 

In Fig 4b, the center of curvature for a section of plate Z2 is at E.  If the curvature of Z2 were any tighter or the distance 
between plates any larger, the center of curvature would fall within the cavity, leading to misleading estimation of the 
energy within the cavity.  Thus there is a restriction that the center of curvature cannot fall within the cavity. 

The restriction of Fig. 4a is the basis for a PFA extension [6] that could not only give a better estimate of forces between 
non-parallel plates but might also eliminate the lateral asymmetric force anomaly.  However that is not what happens.  
The PFA extension not only maintains the lateral force asymmetry for laterally asymmetric plates but also produces an 
anomalous normal force asymmetry for normally asymmetric plates. 
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4. PFA Results for the Sinusoidal Half Wavelength Wedge 

4.1 A mathematical model for a sinusoidally corrugated half wavelength wedge 

The geometry of a sinusoidally corrugated half wavelength wedge is depicted in Fig. 5.  The parameters used in the 
mathematical model based upon this geometry are contained in Table 1: 

 
Parameter Parameter Name Value 
L Corrugation wavelength 1.2 µm* 
A1 Corrugation amplitude of plate 1 0.059 µm* 
A2 Corrugation amplitude of plate 2 Variable – between 0 and A1 

X1 Phase displacement for plate 1 Set to 0 
X2 Phase displacement for plate 2 Variable 
z0 Parametric distance between plates 0.233 µm* 
Y Plate widths (plates 1 & 2) 1 cm 
 
Table 1 – Parameters and values used in half wavelength wedge model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 – Geometry for half wavelength mathematical model 
The parameter values in the table with asterisk were those used in the Chen, Mohideen, et. al.  experiment of 2001 
demonstrating the lateral Casimir force [3].  The x and z coordinates in Fig. 5 are in units of L the corrugation 
wavelength.  The equations for Z1 and Z2 describe the x, z cross-section of plates 1 and 2 respectively. 

4.2 – Calculating total lateral forces on plates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 – Calculation flow for determining total force on plates 1 and 2 individually and collectively 
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As shown in Fig. 6, the process flow for calculating normal and lateral forces on plates begins with the energy per unit x, 
y area in terms of the parameters of the plate geometry.  As might be expected, there are two ways to proceed.  1) 
Calculate the total energy first and then calculate the total force or 2) calculate the force per unit area first and then 
calculate the total force. 

Total energy is calculated by integrating the energy per unit x, y area over the x, y area, which is the same for plates 1 and 
2.  The subsequent total energy can be used for calculating both normal and lateral forces.  Lateral forces for use in the 
model are subsequently found by taking the partial derivative of the total energy with respect to the phase displacement 
X2 for plate 2 and X1 for plate 1.  If X1 = X2 = X, the total force on both plates together can be found by taking the partial 
derivative of the total energy with respect to X. 

The other way of proceeding is to calculate the lateral forces per unit x, y by taking the partial derivative of the energy 
per unit x, y area with respect to phase displacement X2 for plate 2 and X1 for plate 1.  If X1 = X2 = X, the force per unit 
area on both plates together can be found by taking the partial derivative of the energy per unit area x, y with respect to 
X.  Total lateral forces on plates 1 and 2 are then calculated by integrating the forces per unit x, y area over the x, y area.  
Note that the phase displacement variables X1, X2 and X are not the same as the area variable x.  

4.3 – Calculating the angle of the lateral + normal force vector resultant 

As one may have noticed, the lateral force per unit x, y area doesn’t seem to have any physical meaning.  So it is 
interesting to note the angle that the lateral plus normal force per unit x, y area vector resultant takes relative to the local 
area (not the x, y area). 
 
 
 
 
 
 
 
 
 
 
Fig. 7 – The angle of the lateral plus normal vector resultant relative to the local area 
In Fig. 7, if the normal plus lateral vector resultant is perpendicular to the local area, then line AB will be perpendicular 
to the tangent to the curve AC and θ = φ. 
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The magnitude of the normal force per unit area for the Z2 plate is then: 
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While the magnitude of the lateral force per unit area for the Z2 plate is: 
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Thus taking the absolute value Eq. 11 divided by Eq. 10: 
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More over, the derivative of Z2 with respect to x is the slope of Z2 at A and provides the means of determining φ.  Thus: 
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Thus, θ  = φ making the resultant force perpendicular to the local plate area, further making the resultant force per unit 
local plate area a PRESSURE.  So while the lateral force per x, y area doesn’t have physical meaning the vector sum of 
the lateral and normal forces per unit area does. 

Similar arguments can be made in the case of the Z1 plate. 

This demonstration that force per unit plate area (not x, y area) is perpendicular to the plate area is consistent with the 
Milonni, Cook and Goggin [13] demonstration of radiation pressure for flat parallel plates and implies that non-parallel 
plates are also subject to radiation pressure. 

4.4 Lateral Forces on Plates versus Varying Corrugation Phase X2 

As a first test of the behavior of lateral forces on half wavelength wedge geometry depicted in Fig. 5, consider what 
happens when the corrugation phase X2 of the Z2 upper plate is changed while the bottom Z1 plate remains stationary.  
Changing the corrugation phase of the upper plate is equivalent to imagining that the corrugations of the upper plate are 
extended in the positive and negative x directions.  As X2 increases, the upper corrugated plate moves from left to right.  
Only that part of the upper plate that is directly above the stationary lower plate participates in the Casimir effect as 
calculated by the PFA. 

Starting with the energy per x, y area  
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Calculate the lateral force per unit x, y area for plates 1 and 2 by taking the partial derivative of epp (Eq. 13) with respect 
to X1 and X2 respectively.  After the derivatives are taken, set X1 = 0 because plate 1 is stationary. The results for plate 1 
are: 
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Similarly, calculate the lateral force per unit x, y area for plate 2: 
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The next step is to calculate the total lateral forces on each plate and the combination of plates together. 

The total lateral force on plate 1 is found by integrating Eq. 14 by x and y: 
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The total lateral force from both plates is obtained by adding Eq. 16 and Eq. 17: 

F(X2) = F1(X2) + F2(X2) Represented by in Fig. 8 (18) 
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Fig. 8 – Lateral forces on plates 
Observe that the forces on the top plate (in red) are sometimes positive (to the right) and sometimes negative (to the left).  
The forces on the stationary bottom plate (in blue) are always positive.  The forces on the combination of plates (in 
black) are also always positive except for corrugation phase X2 = L/2 where it is 0. 

4.5 Lateral Forces on Half Wave Plates with Parallel Plate “Wings” vs. X2 

The second test of lateral forces on half wavelength wedge plates involves extending the extremities of the sinusoidal 
wedges in both directions (for both plates) with parallel plate “wings”.  Again, the bottom plate will be held stationary 
and the top plate will be allowed to slide back and forth.  
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Obtain the lateral force per unit x, y area for plate 1 by taking the partial derivative of epp (Eq. 19) by X1: 

( ) ( ) ( ) ( )

( ) ( )( )4122

11
11

3

1

21
21

2
,,0maxmin

2
sin

2
,,0maxmin

120

,

XZXZ

L
Xx

L

L
Xx

X

L

Ach

X

XXe
Xf pp

X −
















 −⋅















 −
∂
∂

⋅⋅−=
∂

∂
−=

π
π  (20) 

Obtain the lateral force per unit x, y area for plate 2 by taking the partial derivative of epp (Eq. 19) by X2: 
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The total lateral force on Plate 1: F1(X2) - can be obtained by integrating  fX1(X2), (Eq. 20) by x and y: 

( ) ( )∫ ∫= =
⋅=

L

x

Y

y
X dxdyXfXF

5.1

0 0
2121   Represented by in Fig. 9 (22) 

The total lateral force on Plate 2: F2(X2) - can be obtained by integrating  fX2(X2), (Eq. 21) by x and y: 
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( ) ( )∫ ∫= =
⋅=
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x
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2222   Represented by in Fig. 9 (23) 

The total lateral force from both plates is obtained by adding Eq. 22 and Eq. 23: 

F(X2) = F1(X2) + F2(X2) Represented by in Fig. 9 (24) 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.5 Lateral forces on sliding half wave plates vs. X2 

The third test for the behavior of sinusoidally corrugated half wavelength wedge plates is similar to the first test except 
that the corrugations on the upper plate are not extended in the positive and negative x direction.  Instead the only 
Casimir interaction according to the PFA is for those parts of the upper and lower plates that actually overlap each other. 

Thus the energy per unit x, y area and the force per unit x, y area for plates 1 and 2 are the same as depicted in Eq. 13, 14 
and 15 respectively. 
The total force on plate 1: 

For X2 > X1 = 0:  For X2 < X1 = 0: 
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The total force on plate 2: 

For X2 > X1 = 0:  For X2 < X1 = 0: 
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The total force for both plates combined is: F(X2) = F1(X2) + F2(X2) 
For X2 > X1 = 0 For X2 < X1 = 0 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 – Lateral forces on sliding half wave plates vs. X2 
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Fig. 9 – Lateral forces on half wave plates with parallel plate “wings” vs. X2 
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Thus all test 3 calculations for lateral forces on half wavelength wedges have shown asymmetric forces. 

5. Differences between PWS and PFA 

5.1 Calculating lateral forces on the sliding half wavelength wedge versus X2 using PWS 

In order to demonstrate the difference between the bulk and vacuum centric calculations, elements of the test 3 PFA 
calculation, the results of which are shown in Fig. 10, will be incorporated into a PWS calculation.  For simplicity, the 
full PWS calculation will not be done but will instead be done for a few “atoms” representing the plates. 

Representing the energy per pair of atoms in each of the plates is a simplified Casimir-Polder equation: 
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−= π
, A1 = A2 and C is an arbitrary constant. 

The lateral forces per pair of atoms is then for plate 1: 
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For plate 2: 
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The total lateral forces on each of the two plates is obtained by summing up the lateral forces on each of the pairs of 
atom for each plate. 
 
Total lateral force on plate 1: 
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Total lateral force on plate 2: 
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Fig. 11 - PWS Calculation for Half Wave Wedge Lateral Forces 

It will be observed that lateral forces for the half wavelength wedge calculated by PWS cancel out whereas those 
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5.2 Deriving PWS equation for parallel plates 

Doing a full PWS calculation for corrugated plates was dismissed in favor of a representative calculation involving a few 
“atoms”.  However a full calculation can be done for parallel plates and then compared with the vacuum oriented 
calculation.  Fig. 12 shows a diagram defining the parameters for the PWS calculation of two parallel flat plates. 

 
 
 
 
 
 
 
 
 
 

Fig. 12 – Diagram for deriving PWS equation for parallel plates 

The interaction energy between a pair of atoms in Plates 1 and 2 can be found from the simplified Casimir-Polder 
equation first shown in Eq. 2 and here repeated with some modifications: 
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The total energy between plates is found by integrating over the volumes of both plates: 
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where η = number of atoms per unit volume. (33) 

After much calculation the normal force on plate 2 becomes: 
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When d = 0, Fz = 0, which makes sense because when d = 0 there are no plates and thus no force between plates.  When 
d is much greater than a, but much less than X or Y, Fz becomes like the vacuum centric Casimir equation because the 
terms with d in them go to zero.  For X approximately equal to Y and plate separation a less than X / 1000, SmallerTerms 
is approximately less than one part in a thousand. 

5.3 Comparing the PWS with the vacuum centric solution for parallel plates 

First a comparison of constants used in both calculations: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2 – Constants used in calculation of Casimir forces 

a Casimir cavity - vacuum 

Plate 2 - conducting 

Plate 1 - parallel plates x 

y 

z d 

X 

d 

Y 

(x2, y2, z2) 

(x1, y1, z1) 

r(x1,y1,z1,x2,y2,z2) 

  Material Specific 

αΕ 
 
η 

h 
 
c 

Universal 

1.055 x 10-27 erg*s 
 
2.998 x 1010 cm/s 

1.055 x 10-27 erg*s 
 
2.998 x 1010 cm/s 
 

Reduced Planck’s constant 
 
Speed of light 

N / A 
 
N / A 

1.88 x 10-24 cm3/atom 
(gold) 
 
5.9 x 1022 atoms/cm3 (gold) 

Electrostatic polarizability of 
atom 

Number of atoms per unit 
volume 

Vacuum (PFA) Bulk (PWS) 
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For d much greater than a, 4

22

40

23
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2

240a

XYch
Fpp

π−= ,  

Resulting in the ratio: 172.0
138

2

22

==
π

ηα E

pp

PWS

F

F
for gold. (35) 

The conclusion is that FPWS is much less than Fpp, which leads to the question: If bulk and vacuum models are equivalent, 
Why is the ratio not closer to 1? 

Proceeding a step further, it is interesting to determine the dependency of the force ratio in Eq. 35 on plate thickness d. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13 – Dependency of force ratio FPWS / Fpp on plate thickness d 

It is known that nearer atoms shield further atoms, so some effective distance needs to be used in PWS calculations 
resulting in the force ratio FPWS / Fpp < 0.172. 

Differences between the bulk and vacuum calculations can be summarized as follows: 
• Laterally asymmetric geometries result in laterally asymmetric forces for PFA 
• If bulk & vacuum models are equivalent, Why is FPWS  /Fpp ratio for parallel plates not closer to 1? 
• Screening of distant atoms by closer atoms should make difference greater 
• Lateral forces calculated by PWS cancel out. Those calculated by PFA do not. 
6. Are bulk and vacuum models complementary? 

The general consensus is that the bulk and vacuum interpretations of the Casimir effect are equivalent.  In view of the 
differences seen from calculations using the PWS and the PFA, could the two interpretations be complementary instead 
of equivalent?   

There are two ways the bulk and vacuum models could be complimentary: 
1. By making the total energy the sum of EPFA and EPWS. However, this approach requires a new correction or 

corrections to make it work and the parameters needed in the new correction don’t make sense. 

2. By making the total energy EPFA and the vacuum portion EPFA – EPWS.  With this approach forces from the bulk 
(PWS) model cancel out. 

The second method is the preferred way to make bulk (PWS) and vacuum models complimentary. 

For the case of normal forces and the PFA, the normal forces are already equal and opposite.  PWS also produces equal 
and opposite forces, so differences in the magnitude of normal forces are trivially zero.  However, for the extended PFA 
asymmetric normal forces are possible. 
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Fig. 14a – Complementary normal forces with extended PFA 

As can be seen in Fig. 14a, all asymmetry is coming from the vacuum portion. 

In the case of lateral forces the PFA allows asymmetric forces, PWS does not.  Fig. 14b shows how the PFA and PWS 
forces could be complementary when the PFA is the sum of PWS and a purely vacuum component. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14b – Complementary lateral forces with PFA 

As can be seen in Fig. 14b, all asymmetric forces are coming from the vacuum portion of the PFA. 

7. Conceptual experiments testing asymmetric forces 

7.1 – The typical experiment done today 

Typically, experiments are set up to measure forces on one plate or the other, but not both plates at the same time.  In 
most cases one plate is a sphere and the other a flat plate.  Two flat plates are generally not used because of the great 
difficulty at maintaining parallelism at the requisite accuracy.  There is no issue of parallelism when one plate has a 
spherical surface [10]. 
 
 
 
 
 
 
 
 
 

Fig. 15 - A typical experimental setup 

Experiments that have been done to date implicitly assume the Casimir forces are equal and opposite.  They are not 
capable of measuring asymmetric forces. 
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7.2 – A test of the PFA prediction of asymmetric lateral forces for sinusoidal half wavelength wedge 

In order to measure asymmetric forces, both plates must be constrained so as to not move relative to one another as 
depicted in Fig. 16.  Parallel plate “wings” have been added on to the half sine wave components on each plate.  As 
shown in Fig. 9, the “wings” make the experimental apparatus less sensitive to lateral positioning of the top plate over 
the bottom.  

The parameters in the diagram and their suggested values are as follows: 

L*  = Corrugation wavelength: 1.2 µm, A* = Corrugation amplitude: .059 µm, z0
* = Parametric distance between plates: 

0.233 µm and Y = Plate widths: 1 cm.  The values of the dimensions with asterisk are those used in the Chen, Mohideen 
experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16 - Testing PFA prediction of asymmetric lateral forces for sinusoidal half wavelength wedge 

For a single half wavelength times 1 cm width, there is an expected lateral force about 2 to 3 x 10-4 dynes.  If it were to 
be assumed that the cavity depicted in Fig. 16 were to be repeated multiple times – about 5,000 times in a 1 cm length 
plate – it might be possible to expect from 1 to 1.5 dynes for the entire system.  Such a system would not need an atomic 
force microscope to measure the forces. 

8. Conclusions and implications 

8.1 Conclusions 

Conclusions are summarized in Table 3.  The extended PFA is herein included, even though it was just cursorily 
mentioned, for completeness. 
 
Characteristics PFA Extended PFA PWS 
Premised On Vacuum fields Vacuum fields Bulk matter 
Asymmetric normal forces No Yes No 
Asymmetric lateral forces Yes Yes No 
Force/unit area consistent with 
radiation pressure?  

Yes Not tested Not applicable 

Becomes classical case for 
parallel plates 

Yes Yes No - requires normalization 
or calibration 

Bulk & vacuum views 
complementary? 

PFA & Extended PFA are vector sums of vacuum and bulk (PWS) 
components 

 

Table 3 – Summary of conclusions from consideration of PFA predictions of lateral asymmetric forces for half wavelength wedge 

8.2 Scientific implications 

• Scientific calculations showing equivalence of bulk and vacuum models have not been done for non-parallel plates (to 
author’s best reckoning).  Assertion of equivalence is based upon belief. 

• Experiments to detect asymmetric forces have not been performed (also to the author’s best reckoning).  

• Detection of asymmetric forces would disprove equivalence between vacuum and bulk views of Casimir effect. Non-
detection would not prove the converse however.   

Direction of asymmetric force - to 
atomic force microscope 
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separation 
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• Detection of asymmetric macroscopic forces would send scientists back to the drawing board regarding expansion of 
the universe and why such expansion has not ripped the universe apart. 

• If asymmetric forces are detected, they could provide a new probe into quantum vacuum. 

• Caveat - calculations shown were engineering not scientific calculations. However the engineering surrogate (PFA) 
CLEARLY shows asymmetric lateral forces result for the laterally asymmetric half wavelength wedge.  The PFA is 
still being used to gauge experiments and the parameters used were those used in a classic experiment. 

8.3 Technological implications 

The best way to assess the technological implications of the putative asymmetric forces predicted by the PFA for half 
wavelength wedges is to do a back of the envelope calculation for the force that could be produced from a 1 cm X 1 cm 
X 1cm volume making appropriate assumptions.  Conservatively assume for example that there are between 5,000 and 
10,000 cavities per 1 cm length and 10,000 layers per 1 cm height.  Further assume that the 1 cm3 volume has a density 
approximately that of water and each cavity of one half wavelength times 1 cm width produces a force of 2 x 10-4 dynes 
to 3 x 10-4 dynes.  Then the cubic centimeter cube would produce the following:  

Lateral force / cm3 = between 10,000 dynes / cm3 and 30,000 dynes/cm3 

Intrinsic acceleration = (Lateral force / cm3) / (density = 1 g / cm3) = between 10 gE and 30 gE 

Implied Mass Fractions: 1 part propulsion mass to 5 to 19 parts vehicle and payload mass 

Such mass fractions are more like that of an airplane than a rocket.  Moreover the constant accelerations simultaneously 
solve the problems of weightlessness for astronauts and long interplanetary travel times with implicit radiation exposure.  
Intrinsic accelerations on the high end would make possible the first practical flying car. 

Of course all of these implications depend upon the PFA predictions being real.   

It has been shown that the proximity force approximation predicts anomalous asymmetric lateral forces for asymmetric 
lateral geometries and that the forces per unit plate area calculated with the proximity force approximation are consistent 
with a radiation pressure. Further, it has been plausibly shown that the bulk and vacuum models can co-exist if they are 
complementary instead of equivalent.  

It has not been shown that Casimir plates with asymmetric lateral geometries actually produce asymmetric forces.  The 
predicted asymmetric forces may be a result of an artifact of the proximity force approximation itself.  And, it still might 
be true that the bulk and vacuum models are equivalent. 

Non-the-less the proximity force approximation predictions should stimulate curiosity to examine the possibility of 
asymmetric forces in more detail. 
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